
Key Stage 4 Computing Skill Matrix (GCSE)Key Stage 4 Computing Skill Matrix (GCSE)

 Page 1 of 2

 Emerging Developing Secure Mastered

A
lg

o
ri

th
m

s

Identify and apply algorithms to solve simple
computational problems.

Analyse simple algorithms by identifying their
inputs, processing steps, and outputs, and
represent them using flowcharts or
pseudocode.

Break down complex problems into smaller,
manageable parts using decomposition, and
design solutions for each part.

Demonstrate how to perform linear and
binary search, in a practical physical manner
and use it to find values in a dataset,
explaining how the algorithm processes the
data.

Identify and remove unnecessary detail from
a problem to create a simplified model and
use this abstraction to design a solution.

Demonstrate how to perform merge and
bubble sort, in a practical physical manner
and use it to find values in a dataset,
explaining how the algorithm processes the
data.

Use a systematic approach to problem
solving and algorithm creation representing
those algorithms using pseudo-code and
flowcharts.

Compare multiple algorithms that solve the
same problem and justify which is more
appropriate based on context (e.g.,
efficiency, simplicity).

C
o

m
p

u
te

r
Sy

st
e

m
s

Describe the role of the CPU and its
components (ALU, control unit, clock,
registers, buses), explain the Fetch-Execute
cycle, and evaluate how factors like clock
speed, cores, and cache size affect
performance. Identify and explain the
purpose of different types of memory (RAM,
ROM, cache, registers) and distinguish
between main memory and secondary
storage.

Compare types of secondary storage (solid
state, optical, magnetic) in terms of
operation, advantages, and disadvantages.

Identify when interpreters, compilers, and
assemblers are used and describe how code
is translated for execution.

Distinguish between system software and
application software, giving examples of
each, and explain the role of operating
systems and utility programs in managing
hardware, software, and system security.

Compare low-level and high-level
programming languages, including machine
code and assembly language, and explain the
advantages and disadvantages of each.

Define computer networks and describe the
main types (PAN, LAN, WAN). Compare wired
and wireless networks, including their
advantages and disadvantages.

Explain the purpose of common network
protocols (e.g., Ethernet, Wi-Fi, TCP, IP,
HTTP/S) and describe how they operate
within the four-layer TCP/IP model.

Explain the importance of network security
and describe methods such as
authentication, encryption, firewalls, and
MAC address filtering.

Explain the concept of cloud storage and
evaluate its benefits and limitations
compared to local storage.

D
at

ab
as

e
s

Explain the purpose of databases and
relational databases, using key concepts
such as tables, records, fields, primary keys,
and foreign keys.

Describe how relational databases reduce
data redundancy and inconsistency.

Use SQL to manage data in a relational
database, including:

• Retrieving data

using SELECT, FROM, WHERE,
and ORDER BY clauses

• Inserting data using INSERT
INTO and VALUES

• Updating and deleting data
using UPDATE, SET, and DELETE
FROM with conditions

Create, design and evaluate tables within a
relational database, using key concepts
correctly, to reduce data redundancy and
inconsistency.

Key Stage 4 Computing Skill Matrix (GCSE)Key Stage 4 Computing Skill Matrix (GCSE)

 Page 2 of 2

D
at

a
R

e
p

re
se

n
ta

ti
o

n

Convert between decimal, binary, and
hexadecimal number systems, and explain
how and why binary and hexadecimal are
used to represent data and instructions in
computing.

Perform binary addition and apply binary
shifts to binary numbers, explaining how
shifts affect the value and how they are used
in computing contexts.

Compare and calculate data sizes using bits,
bytes, and standard prefixes (kilo, mega, giga,
tera), and explain how these units are used to
measure digital information.

Describe how sound is digitally represented
using sampling rate and sample resolution
and calculate sound file sizes based on these
properties.

Represent bitmap images using pixels and
colour depth, calculate image file sizes
based on resolution and colour depth, and
convert between binary data and bitmap
representations.

Apply Huffman coding and run length
encoding (RLE) to compress data, interpret
Huffman trees, and calculate the number of
bits required to store compressed and
uncompressed data.

Et
h

ic
s

an
d

 S
e

cu
ri

ty

Define cyber security and explain its main
purposes, including protecting systems,
networks, and data from digital threats.

Describe common types of malware (e.g.,
viruses, trojans, spyware), explain how they
operate, and suggest protective measures.
Identify a range of cyber security threats
including pharming, weak passwords,
misconfigured access rights, removable
media, and outdated software.

Identify and explain different forms of social
engineering (e.g., blagging, phishing,
shoulder surfing), describe how they exploit
human behaviour, and suggest ways to
protect against them.

Explain the purpose of penetration testing
and describe how it is used to identify
vulnerabilities.

Evaluate the ethical, legal, and
environmental impacts of digital technology
on individuals and society, including issues
related to data privacy, security, and
sustainability.

Evaluate the effectiveness of security
measures such as biometrics, password
systems, CAPTCHA, email confirmations,
and automatic software updates.

P
ro

gr
am

m
in

g

Declare and manipulate variables and
constants using appropriate data types
(integer, real, Boolean, character, string),
apply arithmetic operators to perform
calculations, and use meaningful identifiers
to improve code readability and
maintainability.

Write programs that interact with users
through input and output and identify and
correct syntax and logic errors through
testing and debugging.

Write programs that use selection (with
comparison and logical operators) and
iteration (definite and indefinite) to control
program flow and solve problems.

Identify and correct syntax and logic errors in
code through testing and debugging with
support.

Use string handling techniques in programs,
including measuring length, finding character
positions, extracting substrings,
concatenating strings, converting characters
to and from character codes, and performing
string-to-number and number-to-string
conversions.

Use arrays (or equivalent data structures) to
store and manipulate collections of data and
incorporate random number generation in
programs to introduce variability or simulate
real-world scenarios.

Design and implement structured programs
using subroutines that include parameters
and return values. Use local variables within
subroutines and explain how modular design
improves readability, reusability, and
maintainability.

